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Abstract. Unambiguous discrimination and exact cloning reduce the square-overlap between
quantum states, exemplifying the more general type of procedure we termstate separation. We
obtain the maximum probability with which two equiprobable quantum states can be separated
by an arbitrary degree, and find that the established bounds on the success probabilities for
discrimination and cloning are special cases of this general bound. The latter also gives the
maximum probability of successfully producingN exact copies of a quantum system whose
state is chosen secretly from a known pair, givenM initial realizations of the state, where
N > M. We also discuss the relationship between this bound and that on unambiguous state
discrimination.

One of the most characteristic features of quantum information is the fact that the amount of
information required to specify the state of a quantum system is far greater, in fact infinitely
greater, than the amount of information that can actually be extracted by measurement
[1]. In other words, it is impossible to experimentally determine the state of a quantum
system, if we do not know an orthonormal basis to which it belongs. This implies that an
infallible procedure for copying the state cannot exist either [2]. If perfect cloning were
possible, then iteration of the cloning procedure would yield an arbitrarily large ensemble of
independent systems prepared in the same state, which could be inferred through the statistics
of appropriate measurements. Likewise, the no-cloning theorem implies the impossibility
of state measurement, since such a measurement would enable us to manufacture as many
copies of the state as we desire.

Approximate state determination and cloning are nevertheless possible. The traditional
approach of quantum detection theory has been to consider a quantum system whose
unknown state belongs to a finite, known set, and to devise the measurement which yields
the most information about the preparation, where the figure of merit is either the probability
of a correct result or the mutual information [3]. Recently, however, Massar and Popescu
[4] and Derkaet al [5] have considered the problem of estimating a completely unknown
quantum state, givenM independent realizations. Analogous approaches have been used in
the study of cloning. Much of the work done here has focused upon the issue of producing
clones which resemble the original, as measured by the fidelity, as closely as possible [6–10].
As with discrimination, attention has been given to the distinct problems of constructing
cloning machines designed to optimally reproduce a finite number of states [7, 9], and
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universal cloning machines [6, 9, 10], which are able to copy every quantum state with
equal fidelity.

Non-orthogonal quantum states can, with some probability, be discriminated and
cloned without approximation. Ivanovic [11] showed that it is possible to discriminate
unambiguously, that is, with zero error probability, between a pair of non-orthogonal states.
This measurement has subsequently been streamlined by Dieks [12] and Peres [13], and
extended by Jaeger and Shimony [14] and by us [15, 16]. More recently, Duan and Guo
[17] have found that a pair of non-orthogonal states can be cloned exactly. Both operations
have interesting features in common. For example, they are characterized by two possible
outcomes: success or failure. Unambiguous discrimination attempts may give inconclusive
results, and the cloning operation may fail to copy the state. In both cases, we can know
with certainty whether or not the operation has been a success†.

It is natural to inquire as to whether these similarities are the result of a deeper
connection between these operations. One particularly conspicuous common feature is that
both operations transform the states in a manner which decreases their square-overlap. In
state discrimination, they are mapped onto orthogonal states, while in cloning, the square-
overlap is itself squared. Such operations may be said to performquantum state separation.
The purpose of this paper is twofold. We examine the properties of state-separating
operations for a pair of non-orthogonal states, and derive the maximum attainable value
of the probabilityPS that two states can be separated by an arbitrary degree, assuming they
have equala priori probabilities. We then discuss the relationship between state separation,
unambiguous discrimination and cloning. In particular, we show that the Ivanovic–Dieks–
Peres bound [11–13] on the probability of state discrimination is a special case of our
general bound onPS. We also explain how our earlier work [15] on interpolation between
unambiguous and optimal state-discrimination measurements can be understood in terms of
state separation. We then show that the Duan–Guo bound [17] on the probability of exactly
cloning a pair of non-orthogonal states is also a particular case of the separation bound.
Furthermore, we find the more general least upper bound on the probability of producing
N copies of the state givenM initial ones, whereN > M. This result also follows directly
from our bound onPS. Finally, we show that the state discrimination andN from M

cloning bounds imply each other.
Consider a quantum system prepared in one of the two states|ψ1

±〉. We are not told
which of the states the system is in, although we do know that it has equal probability of
being in either. We aim to transform the state into|ψ2

±〉, where

|〈ψ2
+|ψ2

−〉|2 6 |〈ψ1
+|ψ1

−〉|2, (1)

that is, the operation decreases the square-overlap between the two possible states of the
system, thus making them more distinct. This operation cannot be successful all of the
time, and there must be a probability of failure. We wish to maximize the probabilityPS

of this separation of the states being successfully carried out. To analyse this problem, it is
convenient to employ the Kraus representation of quantum operations [19]. Here, each of
the possible, distinguishable outcomes of an operation, which are labelled by the indexn,
is associated with a set of linear transformation operatorsÂnk. These form a resolution of
the identity ∑

nk

Â
†
nkÂnk = 1̂1. (2)

† Also, when extended to the case of multiple quantum states, it has been found that both types of operation are
possible only when the state belongs to a known linearly-independent set (see [16, 18]).
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The additional indexk allows for the possibility of different processes leading to the
same outcome†. Taking the system to be prepared with the initial density operatorρ̂,
the probabilityPn of the nth outcome is

∑
k Tr ρ̂Â†nkÂnk. Correspondingly, the density

operator is transformed according toρ̂ →∑
k Ânkρ̂Â

†
nk/Pn.

The state separation operation can have two possible outcomes, success or failure, which
implies the respective transformation operatorsÂSk and ÂFk. These operators act in the
following way:

ÂSk|ψ1
±〉 = µk±|ψ2

±〉 (3)

ÂFk|ψ1
±〉 = νk±|φk±〉 (4)

where theµk± andνk± are complex coefficients and thekth failure operator transforms the
|ψ1
±〉 into some other normalized states|φk±〉. The resolution of the identity equation (2)

becomes ∑
k

Â
†
SkÂSk + Â†FkÂFk = 1̂1. (5)

Consequently, we have
∑

k |µk±|2 + |νk±|2 = 1. We denote byPS± the conditional
probability that the desired transformation takes place given the initial state|ψ1

±〉, and
find thatPS± =

∑
k |µk±|2, implying that the total success probability is

PS = 1
2(PS+ + PS−) = 1

2

∑
k

|µk+|2+ |µk−|2. (6)

This probability is bounded by the positivity of the operatorsÂ†FkÂFk. When combined
with the identity in equation (5), this implies that none of the eigenvalues of the operator∑

k Â
†
SkÂSk can exceed 1. Consider any state|ψ〉 which is a superposition of|ψ1

±〉:
|ψ〉 = N−1/2

∑
r=±

cr |ψ1
r 〉 (7)

where
∑

r |cr |2 = 1 and the normalization factorN is found to be
∑

r,r ′ c
∗
r ′cr〈ψ1

r ′ |ψ1
r 〉. The

condition that〈ψ |∑k Â
†
SkÂSk|ψ〉 6 1 can be written as(

c∗+ c∗−
) ( PS+ Qβ − α

Q∗β∗ − α∗ PS−

)(
c+
c−

)
6 1 (8)

whereQ =∑k µ
∗
k+µk−, α = 〈ψ1

+|ψ1
−〉 andβ = 〈ψ2

+|ψ2
−〉. Thus, we require the maximum

eigenvalue of the Hermitian matrix in (8) to be no greater than 1, or, equivalently, that

(1− PS+)(1− PS−) > |α −Qβ|2. (9)

This inequality can be used to obtain a bound onPS in the following way. Firstly, we note
that

(1− PS)
2 > (1− PS+)(1− PS−) (10)

where the equality is satisfied only whenPS± = PS. Turning our attention to the right-hand
side of (9), we see that the triangle inequality gives

|α −Qβ| > |α| − |Q||β| (11)

and the equality here can only be attained when the phases ofα andQβ are the same. The
Cauchy–Schwarz inequality gives the following bound on|Q|:

|Q| 6 (PS+PS−)1/2 6 PS. (12)

† The range ofk can be taken to be the same for all outcomes, since we may allow some of theÂnk to be zero.
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Here, the first equality is satisfied only whenµk− is proportional toµk+, and the second is
equivalent to that in (10). Together, these imply thatµk− = µk+eiθ , for some angleθ , which
is then also the phase ofQ. Combining this inequality with (11), and using|α| > |Q||β|,
we obtain|α −Qβ| > |α| − PS|β|. This equality can only be satisfied when the phases of
the overlaps between the initial states|ψ1

±〉 and the (unnormalized) final statesµk±|ψ2
±〉 are

equal. This, when combined with (9) and (10), finally gives the separation bound

PS 6
1− |〈ψ1

+|ψ1
−〉|

1− |〈ψ2+|ψ2−〉|
. (13)

For this bound to be attained, both states must have equal conditional separation
probabilities. Also, the phases of the overlaps between the initial and final states must
be the same. This can easily be satisfied as one of the states can be multiplied by an
arbitrary phase factor without altering its physical meaning.

The maximum value of the separation probability has a natural composition property.
Consider three pairs of quantum states,|ψi

±〉, i = 1, 2, 3, such that

|〈ψ3
+|ψ3

−〉|2 6 |〈ψ2
+|ψ2

−〉|2 6 |〈ψ1
+|ψ1

−〉|2 (14)

and where the overlaps between all three sets of states have equal phases. Then, denoting
by P 12

S , P
23
S and P 13

S the maximum probabilities of carrying out the transformations
|ψ1
±〉 → |ψ2

±〉, |ψ2
±〉 → |ψ3

±〉 and |ψ1
±〉 → |ψ3

±〉, respectively, we see thatP 13
S = P 12

S P
23
S .

Thus, it is possible to attain the maximum separation probability by mapping the initial
states directly onto the final ones, or through one or more sets of intermediate states.

It is important to examine what happens when the separation does not occur, in
particular, whether or not one can make a further attempt. If the attempt fails, then the
initial density operator is transformed into

ρ̂F± =
∑

kÂFk|ψ1
±〉〈ψ1

±|Â†Fk∑
k〈ψ1±|Â†FkÂFk|ψ1±〉

. (15)

We will now show that ifPS takes its maximum value, corresponding to saturation of
the inequality (13), then the stateŝρF± are identical. If the equality in (13) is satisfied,
the operator

∑
k Â
†
SkÂSk has an eigenvector lying in the subspace spanned by|ψ1

±〉 with
eigenvalue 1. It follows from equation (5) that this eigenvector lies in the nullspace of∑

k Â
†
FkÂFk. Thus, there exists a state|ψ〉 of the form shown in equation (7) such that∑

k〈ψ |Â†FkÂFk|ψ〉 = 0. The positivity of theÂ†FkÂFk implies that the expectation value
of each of these operators for the state|ψ〉 must be zero, so everŷAFk annihilates|ψ〉.
Therefore, the expansion coefficientsc± for the state|ψ〉 satisfy

c+ÂFk|ψ1
+〉 = −c−ÂFk|ψ1

−〉. (16)

This expression, when applied to equation (15), immediately givesρ̂F+ = ρ̂F−. Thus, if an
optimum state-separating operation fails, it is futile to make a further attempt to separate
the states, since a failure will erase the bit of information describing the initial preparation.

For the purposes of determining the general limit onPS, we allowed for the possibility of
there being multiple processes leading to either success or failure of the separation attempt.
We can simplify matters by considering an operation with just one process corresponding
to each outcome. A separation operator which attains the limit in (13) is

ÂS =
(

1− |〈ψ1
+|ψ1

−〉|
1− |〈ψ2+|ψ2−〉|

)1/2∑
r=±

|ψ2
r 〉〈ψ1⊥

r |
〈ψ1⊥

r |ψ1
r 〉

(17)
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where, of course, the phases of〈ψ1
+|ψ1

−〉 and〈ψ2
+|ψ2

−〉 are equal. Here, we have introduced
the states|ψ1⊥

+ 〉 and|ψ1⊥
− 〉. These are the states in the subspace spanned by the|ψ1

±〉 which
are orthogonal to|ψ1

−〉 and |ψ1
+〉, respectively. The corresponding failure operator may be

taken to have the form̂AF = Û (1̂1− Â†SÂS)
1/2, whereÛ may be any unitary operator.

An interesting limit arises when|ψ2
±〉 are orthogonal. A von Neumann measurement

would be able to distinguish perfectly between these states, and we would know, with
absolute certainty, in which of the non-orthogonal states the system was prepared. Given
two non-orthogonal states|ψ1

±〉 and setting〈ψ2
+|ψ2

−〉 = 0, the bound (13) on the separation
probability is the limit on the probability of such an unambiguous discrimination attempt
succeeding. The maximum probability thus obtained is equal to that derived by Ivanovic
[11], Dieks [12] and Peres [13] in their studies of this specific problem, and is

PIDP = 1− |〈ψ1
+|ψ1

−〉|. (18)

When the discrimination attempt fails, it will give an inconclusive result. The IDP limit
is not the absolute maximum of the discrimination probability, but is rather the maximum
subject to the constraint that the measurement never gives incorrect results. The absolute
maximum probability of discriminating between two states|ψ±〉 is instead given by the well
known Helstrom limit [3]:

PH = 1
2

(
1+

√
1− |〈ψ+|ψ−〉|2

)
. (19)

The Helstrom measurement does not give inconclusive results, but will incorrectly identify
the state with probability 1− PH. Suppose that we map the states|ψ1

±〉 onto |ψ2
±〉, where

|ψ2
±〉 are not orthogonal but are more distinct than the initial states. Let us consider then

sending the output state to an optimal detector. Such a detector will correctly identify the
output state with probabilityPH in equation (19), with|ψ±〉 = |ψ2

±〉. The probability of
an erroneous result, given that the separation takes place, is 1− PH. Thus, the probability
of correctly determining the state of the system isPD = PSPH. Likewise, the probability
of obtaining an incorrect resultPE = PS(1 − PH), and the probability of obtaining an
inconclusive resultPI = 1− PS. We have the sum rule

PS+ PE+ PI = 1. (20)

It is interesting to ask: what is the bound on the error probabilityPE given a fixed value of
the separation probabilityPS, or equivalently, the probabilityPI of an inconclusive result?
Rearranging the separation bound in (13) to give an inequality for|〈ψ2

+|ψ2
−〉| in terms of

PS and |〈ψ1
+|ψ1

−〉|, which can be written in terms ofPIDP, we obtain

PE > 1
2

(
PS−

√
P 2

S − (PS− PIDP)2
)
. (21)

WhenPS = 1, corresponding to no state separation, the minimum value ofPE is 1− PH,
which corresponds to the Helstrom measurement. ForPS = PIDP, we find thatPE can be
zero, which gives the IDP measurement. This inequality is equivalent to that derived in
[15], and corresponds to a family of measurements which optimally interpolates between
the Helstrom and IDP limits.

A further application of state separation is the production of exact copies of a quantum
system. Suppose we have a quantum system in either of the states|ψ±〉, again with equal
a priori probabilities, and another system in the ‘blank’ state|χ〉. A cloning operation will
transform the product states|ψ±〉|χ〉 into |ψ±〉|ψ±〉. Clearly, the square-overlap of the final
states is the square of that of the initial states, and so is reduced by the operation. Exact
cloning is then seen to be a further example of state separation, and its success probability
is bounded accordingly by (13). Taking|ψ1

±〉 = |ψ±〉|χ〉 and |ψ2
±〉 = |ψ±〉|ψ±〉, we find
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that the separation bound in (13), interpreted as a bound on the probability of producing an
exact copy of the initial state, gives the Duan–Guo limit [17]

PDG = 1

1+ |〈ψ+|ψ−〉| . (22)

It is simple matter to use the bound onPS to derive the least upper bound on producing
N copies of|ψ±〉 from M initial copies whereN > M. We take the initial states|ψ1

±〉
to be the products|ψ±〉1. . .|ψ±〉M |χ〉, where the blank state|χ〉 is composed ofN −M
subsystems. The final states|ψ2

±〉 are|ψ±〉1. . .|ψ±〉N , theN copies of|ψ±〉. It immediately
follows from (13) that the maximum probability of producingN copies given a smaller
numberM of initial copies of the states|ψ±〉 is

PMN = 1− |〈ψ+|ψ−〉|M
1− |〈ψ+|ψ−〉|N . (23)

Let us finally examine the relationship between of the general cloning boundPMN and
the Ivanovic–Dieks–Peres boundPIDP, by showing that they can be derived from each other.
To derive the latter from the former, suppose that we possess a single system prepared in
one of the states|ψ±〉. The maximum probability that we can makeN copies of the
state is given byP1N . We can see from equation (23) that asN → ∞, P1N → PIDP

from above. In this limit, the state could be inferred through the statistics of appropriate
measurements on the copies, so we have shown how equation (23) implies that the states can
be discriminated unambiguously with probabilityPIDP. Duan and Guo have also considered
state identification for arbitrary numbers of states to be equivalent to the production of
an infinite number of copies [18]. Consistency with the cloning bound implies that no
greater value thanPIDP can be attained. If state discrimination could be accomplished with
probability higher thanPIDP, then we could, with the same probability, make an arbitrarily
large number of copies of the state given one initial realization. If this probability was
greater thanPIDP, it would also exceedP1N for sufficiently largeN . The discrimination limit
PIDP and the infinite cloning boundP1∞ (or, for that matter, the maximum discrimination
probability withM copies of the state, andPM∞), are equal due to the equivalence of these
operations.

We can also prove that the discrimination limitPIDP implies thatPMN is an upper bound
on the general cloning probability. Suppose that we haveM quantum systems all prepared
in one of the states|ψ±〉. If PIDP is the maximum probability that we can discriminate
between two quantum states, then it is impossible to discriminate between theM-particle
products with probability greater thanPM∞. Thus, we ought to be unable to improve upon
this bound by first attempting anN from M cloning operation, withN > M, followed
by an attempt to discriminate between theN -particle products, which can be accomplished
with probability no greater thanPN∞. The cloning probability, which we shall write as
PC , must be constrained by the fact this compound operation cannot be accomplished with
probability greater thanPM∞. Thus,PM∞ > PCPN∞, soPC cannot be greater thanPMN
in (23).

We have shown that it is possible, with non-zero probability, to map a pair of quantum
states onto another pair with a lower square-overlap. If the states have equala priori
probabilities, then the maximum attainable value of the separation probabilityPS is given by
the inequality in (13). This limit can account for the established bounds on the probabilities
of performing unambiguous discrimination and exact cloning of two states, and also directly
yields the maximum probabilityPNM of producingN copies givenM initial ones, with
N > M. The fact that the latter bound is strongly related to that on the discrimination
probability should not surprise us. Neither the no-cloning theorem nor the impossibility of
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infallible state discrimination can be consistent without the other. Here, we have shown
how the relationship betweenPMN andPIDP expresses their mutual consistency. This may
be seen to complement the recent results of Gisin and Massar [8] and Brußet al [10] which
relate the maximum fidelity of a universal,approximatecloning machine to limits on state
estimation.

It is possible that all of the qualitatively different approaches to state discrimination
correspond to a particular type of cloning machine, with the bounds on their appropriate
figures of merit being related through consistency. This perhaps suggests that a more
general, quantitative relationship between cloning and discrimination limits can be found;
one that transcends the many particular strategies and deepens our understanding of both
types of operation in general.
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